Organische Synthesen mit Übergangsmetallkomplexen, 40¹⁾

Pyrrole durch metallinduzierte [3+2]-Cycloaddition von 2-Azaallenyl-(= Iminocarben-)Komplexen unter Übertragung einer CNC-Einheit auf ein Alkin; ein Chromacyclopropen durch Cyclocarbonylierung eines 1-Aminoalkins

Rudolf Aumann^a*, Heinrich Heinen^a, Carl Krüger^b und Peter Betz^b

Organisch-Chemisches Institut der Universität Münster^a, Orléans-Ring 23, D-4400 Münster

Max-Planck-Institut für Kohlenforschung^b, Lembkestraße 5, D-4330 Mülheim, Ruhr

Eingegangen am 4. August 1989

Key Words: 2-Azaallenyl chromium complexes / Pyrroles by [3+2] cycloadditions of CNC units / Umpolung of nitrile ylides, metal-induced / 1-Aminoalkynes, cyclocarbonylation / Chromacyclopropene

Organic Syntheses via Transition Metal Complexes, 40^{11} . – Pyrroles by Metal-Induced [3+2] Cycloadditions of 2-Azaallenyl (= Iminocarbene) Complexes with Transfer of a CNC Unit to Alkynes; a Chromacyclopropene Complex by Cyclocarbonylation of a 1-Aminoalkyne

The 2-azaallenyl (= iminocarbene) complex $L_n \overset{\bigoplus}{M} - CR = \overset{\bigoplus}{N} = CXR^1$ **1a** [$L_n M = Cr(CO)_5$, X = OEt, $R = R^1 = Ph$] adds to the polarized alkyne $Et_2N - C \equiv C - CH_3$ (3) to give a 2*H*-pyrrole complex **4** in a metal-induced [3+2] cycloaddition. On warming **4** yields the 2*H*-pyrrole **5**. Since the regiochemistry of the addition of the CNC unit is opposite to that of a nitrile ylide, we consider **1** as an Umpolung equivalent

Templatreaktionen von Alkinen mit Carbenkomplexen sind in letzter Zeit häufig und mit Vorteil für organische Synthesen eingesetzt worden²⁾. Auffallend ist, daß hierzu fast ausschließlich *Alkoxy*carbenchrom-Komplexe und nur sehr selten *Amino*carben-Komplexe zum Einsatz kamen³⁾. Letztere wären speziell für die Darstellung von N-Heterocyclen interessant. Dem steht allerdings entgegen, daß Aminocarben-Komplexe im allgemeinen nicht so reaktionsfreudig sind wie Alkoxycarben-Komplexe, da durch die π -Donorwirkung des Stickstoffs die Elektrophilie des Carbenkohlenstoffs reduziert ist. Durch Verwendung *elektronenarmer* Aminocarbenkomplexe (sog. "Iminocarben"- oder "2-Azaallenyl"-Komplexe) konnten wir jetzt eine erhebliche Reaktivitätssteigerung erreichen.

Wir fanden, daß 2-Azaallenyl-(= Iminocarben-)Komplexe 1 wie 1,3-Dipole (Synthon A) unter Übertragung des CNC-Gerüsts auf ungesättigte organische Substrate reagieren. Mit Isocyaniden entstehen dabei 2-Imidazolin-5-one⁴), mit Alkinen fünfgliedrige N-Heterocyclen. Die Reaktivität von 1 läßt sich durch fünf Parameter (Metall M, Liganden L, Substituenten R, R¹ und X) über einen weiten Bereich variieren.

Komplexe 1 sind leicht zugänglich⁵⁻⁷⁾ und erfüllen damit eine für Synthesebausteine wichtige Grundvoraussetzung. Sie sind isomer zu Ketenimin-Komplexen 2 (durch Insertion von Isocyaniden RNC in M=C-Bindungen von Carbenkomplexen $L_n M = CXR^1$ ebenfalls leicht zugänglich⁸⁾) und $(\overset{\odot}{RC} = N - \overset{\oplus}{C}XR^1)$ of a nitrile ylide $(\overset{\oplus}{RC} = N - \overset{\ominus}{C}XR^1)$. The 2*H*-pyrrole **5** is kinetically unstable and isomerizes smoothly to the 1*H*-pyrrole **7** under the influence of base by an intramolecular redox reaction. A novel (cyclopentadienyl)chromacyclopropene complex **8** resulting from a cyclocarbonylation of the iminoalkyne **3** is obtained as a minor side product. The structural data of **4** and **8** have been determined by X-ray analyses.

weisen hinsichtlich ihrer Reaktivität formal gewisse Ähnlichkeiten mit diesen auf. So reagieren sowohl 1 als auch 2 wie 1,3-Dipole (Synthon A bzw. B). Mit letzteren sind [3+2]-Cycloadditionen von NCC-Einheiten an polare Doppelbindungen C=X (X = O, N, S) zu fünfgliedrigen N-Heterocyclen⁸ möglich. Als Pendant hierzu beschreiben wir jetzt [3+2]-Cycloadditionen von 1 unter Übertragung von CNC-Liganden.

Schema 1. Formaler Vergleich der Reaktivität von 2-Azaallenylund Ketenimin-Komplexen 1 mit 2 durch Synthon A bzw. B

2H-Pyrrole 4 und 5 aus 1 und 3

 $1a^{6.7}$ bildet mit (überschüssigem) Alkin 3 in trockenem THF bei 80°C in 30 min ein 1:6-Gemisch (> 90%) aus dem

Chem. Ber. 123 (1990) 599–604 © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1990 0009–2940/90/0303–599 \$ 02.50/0

2*H*-Pyrrolkomplex 4 und dem 2*H*-Pyrrol 5 [Gl. (1)] (sowie einer geringen Menge an 8, s. u.). Vorstufe von 5 ist 4: Dieses wandelt sich beim Erwärmen [unter Abscheidung von $Cr(CO)_6$] oder bei Einwirkung von Pyridin [unter Bildung von Pyridin-Cr(CO)₅, $t_{1/2}(20^{\circ}C) = 18$ h] vollständig in 5 um.

Die Strukturen der 2H-Pyrrole 4 und 5 wurden spektroskopisch ermittelt. Von 4 liegt auch eine Kristallstrukturanalyse vor (s.u.). Die chemische Verschiebung und das Aufspaltungsmuster der (diastereotopen) OCH2-Gruppen von 4 (δ = 3.48 und 3.25, q von AB-System) und 5 (δ = 3.52 und 3.36, q von AB-System) zeigen, daß diese an chirale sp³-Kohlenstoffe gebunden sind. Die Resonanzsignale der (diastereotopen) ortho-Protonen [$\delta(2,6-H) = 8.15$ und 6.70] der 2-Phenylgruppe sind im Komplex 4 bei +20°C stark verbreitert, da eine freie Rotation dieser Gruppe durch den Raumbedarf des Cr(CO)5-Restes verhindert wird. Bei -10°C beobachtet man das untere Grenzspektrum. In diesem ist eine deutliche Aufspaltung der Signale der (diastereotopen) NCH2-Gruppen erkennbar. Daß der Metallrest über das freie Elektronenpaar am Ringstickstoff, nicht jedoch über die NEt2-Gruppe gebunden ist, folgern wir aus der auffallend starken Tieffeldverschiebung des C-5-Signals in 5 und der gleichsinnigen, jedoch nur geringen Verschiebung der Resonanzsignale der NCH2-Gruppen. Eine Koordination der NEt2-Einheit würde eine deutliche Hochfeldverschiebung letzterer Signale bewirken.

Tab. 1. Vergleich der chemischen Verschiebungen charakteristischer Kohlenstoffresonanzsignale von 4 und 5

	δ(C-4)	δ(C-5)	$\delta(NCH_2)$
4:	148.53	188.26	46.67
5:	145.48	173.91	45.44

Kristallstruktur von 4

Die Molekülstruktur von 4 ist in Abb. 1 dargestellt. Ausgewählte Abstände und Winkel von 4 sind in Tab. 2 angegeben, fraktionelle Atomkoordinaten mit thermischen Parametern in Tab. 3. Tab. 4 gibt eine Zusammenfassung der experimentellen Daten von den Verbindungen 4 und 8. Die Kristallstrukturanalyse von 4 ergibt eine leicht verzerrt oktaedrische Koordination des Chroms mit vier schirmartig

abgebogenen Carbonyl-Liganden. Der 2*H*-Pyrrol-Ligand ist über das N-Atom gebunden (Cr-N(1) 2.160(2) Å), die

Abb. 1. Molekülstruktur von 4

Tab. 2. Ausgewählte Bindungsabstände (Å) und -winkel (°) von 4

Länge der dazu *trans*-ständigen Chrom-Carbonyl-Bindung ist gegenüber den vier anderen um etwa 0.07 Å charakteristisch verkürzt. Der 2*H*-Pyrrol-Ring ist im Rahmen der Standardfehler planar (maximale Abweichung ± 0.03 Å), die Doppelbindungen innerhalb des Heterocyclus sind zwischen C(7) und C(8) [1.338(4) Å] sowie C(9) und N(1) [1.301(4) Å] lokalisiert.

Tab. 3. Fraktionelle Atomkoordinaten und äquivalente thermische Parameter (Å²) von 4 $U_{\bar{a}q} = 1/3 \sum_{i} \sum_{j} U_{ij} a_{i}^{*} a_{j}^{*} \bar{a}_{i} \cdot \bar{a}_{j}$

 $U_{aq} = 1/3 \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* \bar{a}_i \cdot \bar{a}_j$

Atom	x	У	2	Uäq
Cr	0.5795(1)	0.4159(1)	0.2653(1)	0.043
0(1)	0.5450(3)	0.5925(2)	0.3655(2)	0.086
o(2)	0.4810(2)	0.5417(2)	0.1278(2)	0.080
0(3)	0.3308(2)	0.3723(2)	0.2542(1)	0.063
0(4)	0.6204(2)	0.2653(2)	0.1446(2)	0.082
0(5)	0.7993(2)	0.5163(2)	0.2532(2)	0.093
0(6)	0.8414(2)	0.3376(1)	0.3726(1)	0.046
N(1)	0.6421(2)	0.3134(2)	0.3591(1)	0.036
N(2)	0.6320(2)	0.1050(2)	0.4885(1)	0.043
C(1)	0.5600(3)	0.5226(3)	0.3330(2)	0,056
C(2)	0.5209(3)	0.4942(3)	0.1817(2)	0.057
C(3)	0.4264(3)	0.3802(2)	0.2617(2)	0.045
C(4)	0.6040(3)	0.3191(3)	0.1919(2)	0.052
C(5)	0.7219(3)	0.4726(3)	0.2613(2)	0.058
C(6)	0.7541(2)	0.3282(2)	0.4149(2)	0.039
C(7)	0.7662(2)	0.2399(2)	0.4688(2)	0.042
C(8)	0.6714(2)	0.1868(2)	0.4518(2)	0.039
C(9)	0.5993(2)	0.2334(2)	0.3826(2)	0.036
C(10)	0.7521(2)	0.4232(2)	0.4613(2)	0.039
C(11)	0.8376(3)	0.4921(3)	0.4659(2)	0.063
C(12)	0.8386(4)	0.5741(3)	0.5140(3)	0.088
C(13)	0.7572(4)	0.5864(3)	0.5576(3)	0.079
C(14)	0.6720(3)	0.5196(3)	0.5524(2)	0.065
C(15)	0.6693(3)	0.4381(3)	0.5050(2)	0.052
C(16)	0.8639(3)	0,2530(3)	0.3286(3)	0.062
C(17)	0.9568(6)	0.2768(4)	0.2894(4)	0.111
C(18)	0.8/10(3)	0.2269(3)	0.5297(3)	0.063
C(20)	0.0012(3)	0.0996(3)	0.5/41(2)	0.054
C(20)	0.6348(3)	0.10/0(3)	0.0123(3)	0.071
C(22)	0.7518(4)	-0.0316(4)	0 4523(3)	0.034
C(23)	0.4873(2)	0.1924(2)	0.3459(2)	0.039
C(24)	0.4713(3)	0.1471(3)	0.2732(2)	0.052
C(25)	0.3656(4)	0.1091(3)	0.2401(3)	0.070
C(26)	0.2785(4)	0.1178(3)	0.2798(3)	0.077
C(27)	0.2943(3)	0.1605(3)	0.3524(3)	0.065
C(28)	0.3993(3)	0.1969(2)	0.3865(2)	0.049

Überlegungen zur Bildungsweise von 4 und 5

Grundsätzlich sind [3+2]-Cycloadditionen (metallfreier) CNC-Dipole, z. B. von Nitrilyliden, an Alkine zu Pyrrolen bekannt⁹⁾. Unsere Reaktion unterscheidet sich von diesen insofern, als die Additionsrichtung von **1a** an **3** genau entgegengesetzt zu der von Nitrilyliden ist. 2-Azaallenyl-Komplexe **1** liefern also letztlich Umpolungsäquivalente $(RC = N - CXR^{1})$ von (metallfreien) Nitrilyliden $(RC = N - CXR^{1})$ und ermöglichen dadurch den Zugang zu Substitutionsmustern, die mit Nitrilyliden nicht zugänglich sind.

Die Regiochemie der Addition ließe sich durch die Annahme deuten, daß 1a (als 1,4-Dipol C) mit dem Alkin 3 den Metallacyclus D bildet, der dann unter reduktiver Eliminierung zum 2*H*-Pyrrolkomplex 4 umlagert [Gl. (2)]. (Möglicherweise wird ein solcher Prozeß durch Abspaltung von L aus 1a eingeleitet.)

Überlegungen, daß 1a etwa im Gleichgewicht mit einem Nitrilylid-Komplex $\{E \leftrightarrow F\}$ steht und dieser (als 1,4-Dipol)

mit dem Alkin 3 über den Metallacyclus G den 2*H*-Pyrrolkomplex H bildet [Gl. (3)], ergäben zwangsläufig ein anderes Substitutionsmuster, als tatsächlich gefunden wird. Daher scheidet der in Gl. (3) angegebene Reaktionsverlauf aus.

Auch kommt als Vorstufe von 4 ein 1-Amino-4-azapentadienyliden-Komplex I nicht in Betracht, wenngleich dieser durch Insertion von 3 in die Cr = C-Bindungen von 1a eventuell entstehen könnte. Insertionen dieses Typs wurden an *Alkoxy*carben-Komplexen²⁾ tatsächlich gefunden. Zwar würde eine für den Ringschluß von I zu H erforderliche E/Z-Isomerisierung an C-2-C-3 durch die Polarisierung des Liganden (s.o.) grundsätzlich erleichtert¹⁰; doch würde letztlich auch hier (ebenso wie bei der Addition eines Nitrilylid-Komplexes { $\mathbf{E} \rightleftharpoons \mathbf{F}$ } an 4) das in H angegebene, "falsche" Substitutionsmuster entstehen.

1 H-Pyrrole durch Umlagerung von 2 H-Pyrrolen

Die durch unsere Synthese zugänglichen 2*H*-Pyrrole 5 sind sehr reaktionsfreudig. Sie lassen sich z. B. über 2-Azafulvene leicht in Pyrrole umwandeln: Unter dem Einfluß von Basen (EtOH/EtO^{\odot}, 80°C, 15 h) isomerisiert das 2*H*-Pyrrol 5 glatt zum Pyrrol 7. Wir gehen davon aus, daß diese bemerkenswerte Redox-Umlagerung unter 1,4-Eliminierung von EtOH über ein 2-Azafulven 6 verläuft, das entsprechend seiner Polarisierung EtOH zu 7 anlagert [Gl. (4)].

Cyclocarbonylierung des Alkins 3 unter Bildung von 8

Zur vollständigen Umsetzung von 1 mit 3 nach Gl. (1) ist ein Überschuß an 3 erforderlich, da 3 in einer Nebenreaktion offensichtlich rasch oligomerisiert. Von den dabei entstehenden Produkten wurde der Cyclopentadienyl-Komplex 8 [Gl. (5)] spektroskopisch und kristallographisch charakterisiert. Das Ligandensystem von 8 besteht aus drei Alkineinheiten, die durch zwei Carbonylgruppen unterschiedlich verbrückt sind. Möglicherweise wird 8 über Ketenkomplexe K (bzw. deren cyclische Analoga) gebildet, die sich gemäß (6) unter Einbau von 3 zum Metallacyclus zusammenlagern.

Kristallstruktur von 8

Abb. 2 zeigt die Molekülstruktur von 8. In Tab. 5 sind ausgewählte Bindungsabstände und -winkel angegeben, in Tab. 6 die fraktionellen Atomkoordinaten mit ihren thermischen Parametern. Experimentelle Daten sind in Tab. 4 zusammengestellt. Mit 8 liegt der erste röntgenographisch charakterisierte Chromacyclopropen-Komplex¹¹⁾ mit Metall-Kohlenstoff-Mehrfachbindung vor. Dabei ist die Metall-Carben-Bindung mit 1.878(4) Å um etwa 0.3 Å kürzer als die zweite Cr-C-Bindung in diesem Metallacyclus mit 2.165(4) Å, während die Bindung C(9)-C(10) 1.434(6) Å lang ist. Zwei endständige Carbonylgruppen und ein pentasubstituierter Cyclopentadienyl-Ligand vervollständigen

Abb. 2. Molekülstruktur von 8

Tab. 4. Kristalldaten von 4 und 8^{a)}

	4	8	
Summenformel	C28H28CrN2O6	C25H30CrN3O4	
MolMasse	540.5	497.6	
Kristallgröße (mm)	0.32x0.47x0.29	0.14x0.50x0.22	
Kristallfarbe	gelb	rot	
a (Å)	12.105(1)	12.648(2)	
b (Å)	13.526(1)	10.210(1)	
c (Å)	17.392(2)	21.416(2)	
β (*)	101.41(1)	105.92(1)	
V (Å ³)	2791.4	2659.6	
Z	4	4	
$D_{\downarrow} (gcm^{-3})$	1.29	1.24	
μ für Mo-K α (cm ⁻¹)	4.4	4.5	
Kristallsystem	monoklin	monoklin	
Raumgruppe (Nr.)	P2 ₁ /n (14)	P2 ₁ /n (14)	
Wellenlänge λ (Å)	0.71069	0.71069	
Meßmethode	ω/2θ	ω/2θ	
Nonius CAD-4 Diffraktometer			
Gemessene Reflexe (+h+k+l)	8686	6538	
Unabhängige Reflexe	8108	6037	
Beobachtete Reflexe (I>2.0 o (I))	4172	3327	
Verfeinerte Parameter	418	298	
R	0.060	0.064	
R_{w} (w=1/ σ^2 (Fo))	0.047	0.050	
max. Restelektronendichte ($e^{A^{-3}}$)	0.63	0.63	
Strukturlösung durch	Schweratommethode		
Wasserstoffatome	gefunden	berechnet	
H-Temperaturfaktoren fixiert (Å ²)	0.08	0.08	

⁹ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-54013, der Autorennamen und des Zeitschriftenzitats angefordert werden.

die Koordination des Chroms. Durch eine Esterbrücke zwischen dem Cyclopentadienyl-Liganden und dem Chromacyclopropenring wird ein weiterer, nahezu planarer fünfgliedriger Metallacyclus (maximale Abweichung ± 0.13 Å) gebildet. Die zu diesem Fünfring gehörige Cr-C(Cp)-Bindung ist mit 2.100(4) Å deutlich kürzer als die anderen Cr-C(Cp)-Bindungen [2.149(4) bis 2.270(4) Å].

Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft unterstützt.

Experimenteller Teil

Umsetzungen und Aufarbeitungen erfolgten unter Inertgas. – ¹H- und ¹³C-NMR: Bruker WM 300 (Zuordnung durch DR-Experimente bzw. Breitband-, DEPT- und "Gated-decoupling"-Messungen). – IR: Digilab FTS 45. – Massenspektren: Finnigan MAT 312. – Elementaranalysen: Perkin-Elmer-240-Elemental-Analyser. – Säulenchromatographie: Merck-Kieselgel 100; Dünnschichtchromatographie: Merck DC-Alufolien Kieselgel 60 F 254. – Petroletherfraktion: 40–60°C. – R_{Γ} Werte beziehen sich jeweils auf DC-Tests.

Tab. 5. Ausgewählte Bindungsabstände (Å) und -winkel (°) von 8

						<u> </u>
Cr Cr	- C(1) - C(2)	1.833(5) 1.849(5)	C(10) C(10)	- Cr - Cr	- C(9) - C(6)	40.8(2) 90.9(2)
Cr	-C(3)	2.228(4) 2.270(4)	C(10) C(10)	- Cr - Cr	-C(5) -C(2)	89.5(2) 109.3(2)
Cr	-C(5)	2.219(4)	C(10)	- Cr - Cr	- c(1)	88.2(2)
Cr	- C(7)	2.149(4)	C(9)	- Cr	-C(5)	101.3(2)
Cr	- C(10)	1.878(4)	C(9)	- Cr	-C(1)	119.6(2)
0(1)	- C(2)	1.147(6)	C(6)	- Cr	-C(1)	147.6(2)
0(3)	- C(6) - C(8)	1.385(5)	C(5) C(5)	- Cr	- C(2)	109.5(2)
O(4) N(1)	- C(8) - C(3)	1.199(5) 1.416(5)	C(2) C(8)	- 0(3)	- C(1)	85.5(2)
N(1) N(1)	- C(11) - C(13)	1.456(6) 1.445(6)	C(13) C(13)	- N(1) - N(1)	- C(11)	114.7(4) 118.0(4)
N(2) N(2)	- C(4) - C(15)	1.413(5) 1.462(6)	C(11) C(17)	- N(1) - N(2)	- C(3) - C(15)	117.9(3) 115.4(3)
N(2) N(3)	- C(17) - C(10)	1.466(6) 1.315(5)	C(17) C(15)	- N(2) - N(2)	- C(4) - C(4)	119.4(3) 1 13. 8(3)
N (3) N (3)	- C(19) - C(21)	1.474(6) 1.467(6)	C(21) C(21)	- N(3) - N(3)	- C(19) - C(10)	116.1(4) 120.9(3)
C(3) C(3)	- C(4) - C(7)	1.427(6) 1.438(5)	C(19) O(1)	- N(3) - C(1)	- C(10) - Cr	123.0(4) 179.4(4)
C(4) C(5)	- C(5) - C(6)	1.419(5) 1.416(6)	0(2) C(7)	- C(2) - C(3)	- Cr - C(4)	177.4(4) 108.0(3)
C(5) C(6)	- C(23) - C(7)	1.506(6) 1.422(6)	C(7) C(4)	- C(3) - C(3)	- N(1) - N(1)	129.2(4) 122.4(3)
C(7) C(8)	-C(24) -C(9)	1.508(6) 1.479(6)	C(5) C(5)	- C(4) - C(4)	- C(3) - N(2)	109.5(3) 128.5(4)
C (9) C (9)	- C(10) - C(25)	1.434(6) 1.515(6)	C(3) C(23)	- C(4) - C(5)	-N(2) -C(6)	121.8(3) 123.9(4)
C(11) C(13)	- c(12) - c(14)	1.487(7) 1.479(8)	C(23) C(6)	- C(5) - C(5)	-C(4) -C(4)	130.1(4) 105.5(3)
C(15)	-C(16)	1.507(7)	C(7) C(7)	- C(6) - C(6)	- C(5) - O(3)	111.6(3) 124.4(3)
C(19)	-C(20)	1.458(9) 1.513(7)	C(5) C(24)	- C(6) - C(7)	-0(3)	124.0(4) 123.9(4)
0(21)	0(24)	1.010(/)	C(24)	- C(7)	- C(3)	130.6(4)
			C(9)	-C(8)	-0(4)	125.8(4)
			O(4)	- C(8)	-0(3)	117.4(4)
			C(25)	- C(9)	- C(8)	112.6(4)
			C(10)	- C(9)	- C(8)	119.9(4)
			C(8)	= C(9) = C(9)	-Cr	109.5(3)
			C(9)	- C(10)) - Cr	80.4(2)
			u(2))- CI	T2T'2(2)

Pentacarbonyl[4-(diethylamino)-2-ethoxy-3-methyl-2,5-diphenyl-2H-pyrrol)chrom (4), 4-(Diethylamino)-2-ethoxy-3-methyl-2,5-diphenyl-2H-pyrrol (5) und Komplex 8: 429 mg (1.00 mmol) 2-Azaallenyl-Komplex 1a^{6,7)} und 444 mg (4.00 mmol) Alkin 3 in 3 ml trockenem THF werden in einem luftdicht verschraubbaren 5-ml-Glasgefäß erwärmt (30 min, 80°C). Die zunächst hellrote Lösung wird dabei bräunlich. Beim Abkühlen bilden sich farblose Kristalle von Cr(CO)₆. Man dampft ein (20°C/15 Torr), nimmt in 3 ml Toluol auf und chromatographiert an Kieselgel (Säule 30×2 cm). Mit Petrolether/Dichlormethan (1:1) erhält man bei raschem Eluieren eine gelbe Fraktion mit sehr zersetzlichem Komplex 4 ($R_{\rm f} = 0.7$ in Petrolether/Dichlormethan 1:1, Schmp. 105°C aus Petrolether bei -78°C; 80 mg, 15%, gelbe Kristalle), anschließend mit Dichlormethan/Ether (1:1) eine gelbe Fraktion mit sehr wenig 8 ($R_f = 0.6$, ca. 10 mg, rote Kristalle, Schmp. 101 °C) und nachfolgend eine farblose Fraktion mit $5(R_f = 0.5$ in Ether/Dichlormethan 10:1, farblose Kristalle, die sich an Luft rasch gelb färben; 300 mg, 86%, Schmp. 44°C aus Petrolether bei - 78°C). Bei längerer Reaktionszeit wandelt sich 4 vollständig in 5 um.

4: ¹H-NMR (CDCl₃): δ = 8.15 und 6.70 (je 1 H, bei +20°C dynamisch verbreitert, 2,6-H 2-C₆H₃), 7.52-7.20 (8H, m verbreitert), 3.48 und 3.25 (je 1 H, diastereotope OCH₂), 2.71 (4H, m, diastereo-

Tab. 6. Fraktionelle Atomkoordinaten und äquivalente thermische Parameter (Å²) von 8 ($U_{\rm äq}$ siehe Tab. 3)

				
Atom	x	У	Z	^U äq
~~~	0 5456(1)	0.3579(1)	0.2927(1)	0.026
	0.5458(1)	0.3578(1)	0.2627(1)	0.030
0(2)	0.7854(3)	0.0022(3) 0.4221(4)	0.3294(2)	0.085
0(3)	0.3873(2)	0.5549(3)	0.3084(1)	0.051
0(4)	0.4664(3)	0.6264(3)	0.4078(1)	0.076
N(1)	0.5839(3)	0.4561(3)	0.1426(2)	0.046
N(2)	0.4141(3)	0.2560(3)	0.1323(2)	0.047
N (3)	0.4526(3)	0.2146(3)	0.3836(2)	0.045
C(1)	0.5892(3)	0,1890(5)	0.2746(2)	0.046
C(2)	0.6941(4)	0.3957(4)	0.3105(2)	0.052
C(3)	0.5164(3)	0.4514(4)	0.1855(2)	0.037
C(4)	0.4328(3)	0.3550(4)	0.1801(2)	0.039
C(5)	0.3720(3)	0.3829(4)	0.2252(2)	0.037
C(6)	0.4196(3)	0.4980(4)	0.2579(2)	0.038
C(7)	0.5081(3)	0.5437(4)	0.2347(2)	0.040
C(8)	0.464/(4)	0.5428(4)	0.3683(2)	0.049
	0.5396(3)	0.4291(4)	0.3/69(2)	0.043
	0.49/2(3)	0.3026(4)	0.3539(2)	0.038
	0.6670(4)	0,304/(5)	0.1487(2)	0.060
C(13)	0.6150(4)	0.5034(0)	0.0005(5)	0.033
C(14)	0.5201(5)	0.6630(5)	0.1230(2)	0.071
C(15)	0.3682(4)	0.3043(5)	0.0661(2)	0.062
C(16)	0.2544(4)	0.3618(5)	0.0520(2)	0.080
C(17)	0.3735(4)	0.1278(5)	0.1461(2)	0.064
C(18)	0.4253(5)	0.0181(5)	0.1173(3)	0.102
C(19)	0.4241(5)	0.2415(5)	0.4447(2)	0.067
C(20)	0,3085(5)	0.2750(6)	0.4339(3)	0.107
C(21)	0.4264(4)	0.0829(4)	0.3564 (2)	0.052
C(22)	0.5086(5)	-0.0184(5)	0.3915(2)	0.080
C(23)	0.2689(3)	0.3203(4)	0.2336(2)	0.053
C(24)	0.5702(4)	0.6687(4)	0.2571(2)	0.059
C(25)	0.6350(4)	0.4394(5)	0.4375(2)	0.064

tope NCH₂), 1.64 (3H, s, 3-CH₃), 1.48 (3H, t, CH₂ Et), 0.86 (6H, t, CH₃ NEt₂). – ¹³C-NMR (CD₃COCD₃):  $\delta$  = 223.02 und 215.22 [1:4, Cr(CO)₅], 188.26 (C-5); 148.53, 144.11, 137.11, 136.51 (1:1:1:1, C-3,4 und 2 C-*i* C₆H₃); 130.92, 129.67, 129.46, 129.24, 129.14, 127.81 und 125.56 (bei + 20°C dynamisch verbreitert, bei – 20°C scharf) [1:1:2:2:2:1:1, 2 C-(2-5) C₆H₃]; 108.93 (C-2), 60.04 (OCH₂), 46.67 (2 C, NCH₂), 15.86 (CH₃ OEt), 13.91 (2 C), CH₃ NEt₂), 12.71 (3-CH₃). – IR (Hexan), cm⁻¹ (%):  $\tilde{v}$  = 2061.9 (20), 1977 (5), 1936.5 (100), 1930.7 (100), 1907.6 (50) [v(C=O)]; IR (Film): 2060.0 (60), 1975.1 (50), 1925.0 (100), 1860.6 (90) [v(C=O)], 1649.1 (20) [v(C=N)], 1103.3 (100) und 1076.4 (100) [v(C=O-C)]. – MS (70 eV): *m/z* (%) = 540 (4) [M[⊕]], 512 (1), 484 (2), 456 (3), 428 (26), 400 (60) [M - 5 CO], 348 (64) [400 - Cr], 319 (60) [348 - C₂H₅], 304 (86) [319 - CH₃], 289 (70) [304 - CH₃], 260 (100) [289 -C₂H₃], 259 (100) [304 - OC₂H₅], 115 (100), 105 (80).

 $\begin{array}{rl} C_{28}H_{28}CrN_2O_6\ (540.6) & \mbox{Ber. C}\ 62.22\ H\ 5.22\ N\ 5.18\\ & \mbox{Gef. C}\ 62.02\ H\ 5.24\ N\ 5.15 \end{array}$ 

5: ¹H-NMR (CDCl₃):  $\delta = 8.13$  (2H, ,,d", 2,6-H 5-C₆H₃), 7.45 – 7.20 (8H, m), 3.52 und 3.36 (je 1 H, diastereotope OCH₂), 3.05 (4H, q, NCH₂), 1.80 (3H, s, 3-CH₃), 1.30 (3H, t, CH₂ Et), 1.10 (6 H, t, CH₃ NEt₂). – ¹³C-NMR (CDCl₃):  $\delta = 173.91$  (C-5); 145.48, 142.11, 138.81, 134.67 (1:1:1:1, C-3,4 und 2 C-*i* C₆H₃); 130.10, 128.32, 128.15, 128.01, 127.33, 125.53 [1:2:2:2:2:1, 2 C-(2-5) C₆H₃]; 104.54 (C-2), 58.51 (OCH₂), 45.44 (2 C, NCH₂), 15.72 (CH₃ OEt), 12.59 (2 C, NEt₂), 11.55 (3-CH₃). – IR (Film), cm⁻¹ (%):  $\tilde{v} = 1720.5$  (5) [Verunreinigung ??], 1643.3 (30) [v(C=N)], 1554 (30), 1099.4 (100) und 1072.4 (100) [v(C-O-C)]. – MS (70 cV): *m/z* (%) = 348 (44) [M[®]], 320 (12), 319 (50) [M – Et], 304 (10), 291 (22) [319 – C₂H₄], 259 (20), 216 (10) [319 – C₆H₅CN], 105 (100) [C₆H₅CO, 216 – CH₃C≡CNEt₂].

$$\begin{array}{c} C_{23}H_{28}N_2O~(348.5) & \mbox{Ber. C}~79.27~H~8.10~N~8.04 \\ & \mbox{Gef. C}~78.96~H~8.28~N~7.98 \end{array}$$

8: ¹H-NMR (CDCl₃):  $\delta$  = 4.20, 3.85, 3.70, 3.60 (je 1 H, je m, diastereotope NCH₂); 3.15 und 3.00 (je 2H, je m, je diastereotope NCH₂); 2.10, 1.52, 1.46 (je 3H, je s, je =  $C-CH_3$ ); 1.40 und 1.35 (je 2H, je t, je CH₃ NEt₂), 1.18 und 1.04 (je 6H, je t, je 2 CH₃ NEt₂). – IR (Film), cm⁻¹ (%):  $\tilde{v} = 1934.6$  (100) und 1867.1 (100)  $[v(C \equiv O)]; 1712.8 [v(C = O)]. - MS (70 eV): m/z (\%) = 497 (30)$  $[M^{\oplus}]$ , 441 (35) [M - 2 CO], 413 (90) [441 - CO], 373 (62)  $[413 - C_3H_4]$ , 302 (100)  $[413 - CH_3C \equiv CNEt_2]$ , 272 (40), 244 (50).

## C₂₅H₃₉CrN₃O₄ (497.6) Ber. C 60.35 H 7.90 N 8.44 Gef. C 60.71 H 8.05 N 8.37

3-(Diethylamino)-4-(ethoxymethyl)-1,5-diphenylpyrrol (7) durch Isomerisierung von 5: Eine Lösung von 174 mg (0.50 mmol) 5 in 2 ml Ethanol wird mit 20 mg (0.5 mmol) KOH versetzt und in einem luftdicht verschraubbaren 5-ml-Glasgefäß unter Luftausschluß 15 h auf 80°C erwärmt. Man dampft ein (20°C/15 Torr), nimmt den Rückstand in 5 ml Ether auf und trocknet mit wenig  $Na_2SO_4$ . Nach Entfernen des Ethers verbleiben 160 mg (92%) 7 als farbloses Öl, das laut DC-Test einheitlich ist und daher direkt spektroskopisch gemessen wurde. – ¹H-NMR (CDCl₃):  $\delta = 8.00$  (1 H, s breit, NH), 7.80 und 7.60 (je 2H, je "d"), 7.42 und 7.32 (je 2H, je "t"), 7.20 und 7.15 (je 1 H, je "t"), 4.38 (2 H, s, 4-CH₂O), 3.52 (2 H, q, OCH₂ Et), 3.10 (4H, q, 2 NCH₂), 1.30 (3H, t, CH₃ OEt), 1.10 (6 H, t, 2 CH₃ NEt). - ¹³C-NMR ([D₆]Aceton):  $\delta$  = 134.2, 133.7, 133.6, 131.5, 128.6, 118.4 (je s, C-1 bis 4, 2 C-i C₆H₅); 128.9, 128.5, 127.7, 126.9, 126.7, 126.0 (2:2:2:1:2:1, je CH, 2 C₆H₅); 65.6 und 64.5 (je CH₂, OCH₂), 49.6 (2 CH₂, NCH₂), 15.5 und 14.5 (1:2, je CH₃, OEt und NEt₂. – IR (Film), cm⁻¹ (%)  $\tilde{v}$  = 3419.8 (30) [v(N-H)], 1604.8 (20) [v(C=N)], 1373.3 und 1354.0 (je 100) [v(C-O-C)]. - MS (70 eV): m/z (%) = 348 (80) [M^{$\oplus$}], 319 (40) [M - Et], 304 (40)  $[M - C_2H_4O]$ , 290 (58) [319 - Et], 289 (40), 287 (100), 275 (40), 245 (45), 232 (20).

CAS-Registry-Nummern

- 1a: 117497-99-1 / 3: 4231-35-0 / 4: 123149-06-4 / 5: 123149-04-2 / 7: 123149-05-3 / 8: 123149-07-5
- ¹⁾ 39. Mitteilung: R. Aumann, J. Schröder, J. Organomet. Chem., Manuskript eingereicht.
- ²⁾ Übersicht: K. H. Dötz, Angew. Chem. 96 (1984) 573; Angew. Chem. Int. Ed. Engl. 23 (1984) 587; K. H. Dötz, M. Popall, G. Müller, J. Organomet. Chem. 334 (1987) 57; K. S. Chan, G. A. Peterson, T. A. Brandvold, K. L. Faron, C. A. Challener, C. Hyldahl, W. D. Wulff, J. Organomet. Chem. 334 (1987); N. E. Schore, Chem. Rev. 88 (1988) 1081.
- ³⁾ M. F. Semmelhack, Jaiwook Park, Organometallics 5 (1986) 2550; B. Denise, A. Parlier, H. Rudler, J. Vaissermann, J. C. Daran, J. Chem. Soc., Chem. Commun. 1988, 1303; A. Yamashita, Tetrahedr. Lett. 27 (1986) 5915; K. H. Dötz, J. Organomet. Chem. 118 (1976) C13; A. Hafner, L. S. Hegedus, G. deWeck, B. Hawkins, K. H. Dötz, J. Am. Chem. Soc. 110 (1988) 8413.
- ⁴⁾ R. Aumann, H. Heinen, Chem. Ber. 122 (1989) 1139
- ⁵⁾ H. Fischer, S. Zeuner, J. Organomet. Chem. 327 (1987) 63; H. Fischer, U. Schubert, Angew. Chem. 93 (1981) 482; Angew. *Chem. Int. Ed. Engl.* **20** (1981) 461. ⁶ D. C. Yang, V. Dragisich, W. D. Wulff, J. C. Huffman, *J. Am.*
- Chem. Soc. 110 (1988) 307
- ⁷⁾ R. Aumann, S. Althaus, C. Krüger, P. Betz, Chem. Ber. 122 (1989)
- ⁸⁾ Übersicht: R. Aumann, Angew. Chem. 100 (1988) 1512; Angew. Chem. Int. Ed. Engl. 27 (1988) 1456; R. Aumann, H. Heinen, H. Heinen E. Kuckert, ibid. 97 (1985) 960 bzw. 24 (1985) 978; R. Aumann, H. Heinen, Chem. Ber. 122 (1989) 77.
- 9) H. Gotthardt, R. Huisgen, Chem. Ber. 103 (1970) 2625; H. Gotthardt, R. Huisgen, H. O. Bayer, J. Am. Chem. Soc. 92 (1970) 4340
- ¹⁰⁾ R. Aumann, P. Hinterding, Chem. Ber. 122 (1989) 365.
- ¹¹⁾ J. L. Templeton, Adv. Organomet. Chem. 29 (1989) 71.

[249/89]